Skip to content

Literature

DNP-FFC

"Fast-Field-Cycling NMR: Applications and Instrumentation."

Anoardo, E., Galli, G. & Ferrante, G. Fast-field-cycling NMR: Applications and instrumentation. Appl. Magn. Reson. 20, 365–404 (2001). https://doi.org/10.1007/BF03162287

"NMR field-cycling spectroscopy: principles and applications."

F. Noack, NMR field-cycling spectroscopy: principles and applications, Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 18, Issue 3, 1986, Pages 171-276, https://doi.org/10.1016/0079-6565(86)80004-8

"Signal Enhancement for Fast Field-cycling Relaxometry by Dynamic Nuclear Polarization: Basic Principles, Hardware and Methods"

NEUDERT, Oliver. Signal Enhancement for Fast Field-cycling Relaxometry by Dynamic
Nuclear Polarization: Basic Principles, Hardware and Methods in Field-cycling NMR Relaxometry: Instrumentation, Model Theories and Applications, 2018, 18: 138

"Fast-field-cycling relaxometry enhanced by Dynamic Nuclear Polarization"

O. Neudert, C. Mattea, S. Stapf, M. Reh, H.W. Spiess, K. Münnemann, Microporous and Mesoporous Materials 2015205, 70–74

"An Alderman-Grant resonator for S-band Dynamic Nuclear Polarization"

O.Neudert, H-P. Raich, C. Mattea, S. Stapf, Kerstin Münnemann, Jounal of Magnetic Resonance2014242, 79-85

"High-field liquid state NMR hyperpolarization: a combined DNP/NMRD approach"

P. Neugebauer, J.G. Krummenacker, V.P. Denysenkov, C. Helmling, C. Luchinat, G. Parigi, T.F. Prisner, Phys. Chem. Chem. Phys. 201416, 18781

"A comparative study of 1H and 19F Overhauser DNP in fluorinated benzenes"

O. Neudert, C. Mattea, H.W. Spiess, S. Stapf, K. Münnemann, Phys. Chem. Chem. Phys. 201315, 20717

Electrolytes/Ionic liquids

"Broadband NMR Relaxometry as a Powerful Technique to Study Molecular Dynamics of Ionic Liquids."

Dr. Carla C. Fraenza, Prof. Dr. Steven G. Greenbaum, https://doi.org/10.1002/cphc.202300268

"Understanding the Nature of Nuclear Magnetic Resonance Relaxation by Means of Fast-Field-Cycling Relaxometry and Molecular Dynamics Simulations—The Validity of Relaxation Models"

P. Honegger, V. Overbeck, A. Strate, A. Appelhagen, M. Sappl, E. Heid, C. Schröder, R. Ludwig, O.
Steinhauser, J. Phys. Chem. Lett. 202011, 2165-2170

"Dynamics of ionic liquids in confinement by means of NMR relaxometry – EMIM-FSI in a silica matrix as an example"

D. Kruk, M. Wojciechowski, M. Florek-Wojciechowska, R. Kumar Singh, Materials 2020, 13

"Nuclear magnetic relaxation and diffusion study of the ionic liquids 1‐ethyl‐and 1‐butyl‐3‐methylimidazolium bis (trifluoromethylsulfonyl) imide confined in porous glass"

A. Ordikhani Seyedlar, S. Stapf, C. Mattea, Magnetic Resonance in Chemistry 201957, 818-828

"The gelation influence on diffusion and conductivity enhancement effect in renewable ionic gels based on LMWG"

M. Bielejewski, A. Rachocki, J. Kaszyska, J. Tritt-Goc, Phys. Chem. Chem. Phys. 201820, 5803-5817

"NMR Studies of Protic Ionic Liquids "

V. Overbeck, R. Ludwig in Annual Reports on NMR Spectroscopy2018, Ed. G.A. Webb, pp 147-184

"Investigation of Dynamics in BMIM TFSA Ionic Liquid through Variable Temperature and Pressure NMR Relaxometry and Diffusometry"

K. Pilar, A. Rua, S.N. Suarez, C. Mallia, S. Lai, J. R. P. Jayakody, J.L. Hatcher, J. F. Wishart, S.
Greenbaum, Journal of the Electrochemical Society 2017164, H5189-H5196

"Dynamical properties of EMIM-SCN confined in a SiO2 matrix by means of 1H NMR relaxometry"

D. Kruk, M. Wojciechowski, Y.L. Verma, S.K. Chaurasia, R.K. Singh, Phys. Chem. Chem. Phys. 201719,
32605-32616

"Relation of short-range and long-range lithium ion dynamics in glass-ceramics: Insights from 7Li NMR field-cycling and field-gradient studies"

M. Haaks, S.W. Martin, M. Vogel, Phys. Rev. B 201796, 104301-1 – 104301-9

"Translational dynamics of ionic liquid imidazolium cations at solid/liquid interface in gel polymer electrolyte"

A. Rachocki , E. Andrzejewska, A. Dembna, J. Tritt-Goc, European Polymer Journal 201571, 210–220

"Lithium ion dynamics in Li2S+GeS2+GeO2 glasses studied using 7Li NMR field-cycling relaxometry and line-shape analysis"

J. Gabriel, O.V. Petrov, Y. Kim, S.W. Martin, M. Vogel, Solid State Nuclear Magnetic Resonance 201570, 53–62

"Determining diffusion coefficients of ionic liquids by means of field cycling nuclear magnetic resonance relaxometry"

D. Kruk, R. Meier, A. Rachocki, A. Korpała, R. K. Singh, and E. A. Rössler, J. Chem. Phys. 2014140, 244509

"NMR Relaxometry Study of the Interaction of Water with a Nafion Membrane under Acid, Sodium, and Potassium Forms. Evidence of Two Types of Bound Water"

F. Xu, S. Leclerc, D. Canet, J. Phys. Chem. B 2013117, 6534−6540

"1H and 19F FFC-NMR of Catalyst Layer Materials for Polymer Electrolyte Membrane Fuel Cells"

M. Yamaguchi, A. Ohira, Diffusion-Fundamentals.org 2013, 18, 16, 1-4

"Combining 7Li NMR field-cycling relaxometry and stimulated-echo experiments: A powerful approach to lithium ion dynamics in solid-state electrolytes"

M. Graf, B. Kresse, A.F. Privalov, M. Vogel , Solid State Nuclear Magnetic Resonance 201351-52, 25–30

"Conductivity and Fluoride Ion Dynamics in r-PbSnF4; 19F Field-Cycling NMR and Diffraction Studies"

E. Murray, D.F. Brougham, J. Stankovic, I. Abrahams, J. Phys. Chem. C 2008112, 5672-5678

Fast Field Cycling NMR relaxometry books and review articles

"Field-cycling NMR Relaxometry: Instrumentation, Model Theories and Applications."

Kimmich, R. (2018). Field-cycling NMR relaxometry. In New developments in NMR., The Royal Society of Chemistry, 2018. Edited by Rainer Kimmich https://doi.org/10.1039/9781788012966

"Field-cycling NMR relaxometry."

Kimmich Rainer, Anoardo Esteban. Field-cycling NMR relaxometry V.44, Progress in Nuclear Magnetic Resonance Spectroscopy, 2004, http://dx.doi.org/10.1002/chin.200447278 

"Solid state Field-Cycling NMR relaxometry: Instrumental improvements and new applications."

Franz Fujara, Danuta Kruk, Alexei F. Privalov, Solid state Field-Cycling NMR relaxometry: Instrumental improvements and new applications, Progress in Nuclear Magnetic Resonance Spectroscopy, Volume 82, 2014, Pages 39-69, https://doi.org/10.1016/j.pnmrs.2014.08.002

Self-diffusion studies by intra- and inter-molecular spin-lattice relaxometry using field-cycling: Liquids, plastic crystals, porous media, and polymer segments"

R. Kimmich and N. Fatkullin, Progress in Nuclear Magnetic Resonance Spectroscopy 2017101, 18–50

"New applications and perspectives of fast field cycling NMR relaxometry"

R.M. Steele, J.-P. Korb, G. Ferrante, S. Bubici, Magn.Reson.Chem. 201554, 502-9

"Applications of fast field cycling NMR relaxometry".

Conte, Pellegrino. (2021). 10.1016/bs.arnmr.2021.05.001.

"Rapid Field-Cycling MRI Using Fast Spin-Echo"

P.J. Ross, L.M. Broche, D.J. Lurie, Magnetic Resonance in Medicine 2015, 7, 31120–1124

"NMR Field Cycling Spectroscopy: Principles and Applications"

F. Noack, Progress in NMR Spectroscopy 198618, 171-276

"Field Cycling NMR Relaxometry"

R. Kimmich, Bull. Mag. Reson. 19801, 195-218

"Fast-field-cycling ultralow-field nuclear magnetic relaxation dispersion."

Bodenstedt, S., Mitchell, M.W. & Tayler, M.C.D. Fast-field-cycling ultralow-field nuclear magnetic relaxation dispersion. Nat Commun 12, 4041 (2021). https://doi.org/10.1038/s41467-021-24248-9

"Desktop fast-field cycling nuclear magnetic resonance relaxometer."

Duarte Mesquita Sousa, Gil Domingos Marques, José Manuel Cascais, Pedro José Sebastião, Desktop fast-field cycling nuclear magnetic resonance relaxometer, Solid State Nuclear Magnetic Resonance, Volume 38, Issue 1, 2010, Pages 36-43, https://doi.org/10.1016/j.ssnmr.2010.07.001

FFC in biological tissues in vivo and ex vivo

"Low-Field NMR Relaxometry for Intraoperative Tumour Margin Assessment in Breast-Conserving Surgery."

Bitonto, V.; Ruggiero, M.R.; Pittaro, A.; Castellano, I.; Bussone, R.; Broche, L.M.; Lurie, D.J.; Aime, S.; Baroni, S.; Geninatti Crich, S. Low-Field NMR Relaxometry for Intraoperative Tumour Margin Assessment in Breast-Conserving Surgery. Cancers 2021, 13, 4141. https://doi.org/10.3390/ cancers13164141

"Intracellular Water Lifetime as a Tumor Biomarker to Monitor Doxorubicin Treatment via FFC-Relaxometry in a Breast Cancer Model"

Maria Rosaria Ruggiero, Simona Baroni, Valeria Bitonto, Roberto Ruiu, Smeralda Rapisarda, Silvio Aime and Simonetta Geninatti Crich -
Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy, IRCCS SDN, Naples, Italy - Frontiers in Oncology, 2021

"Towards applying NMR relaxometry as a diagnostic tool for bone and soft tissue sarcomas: a pilot study"

E. Masiewicz, G.P. Ashcroft, D. Boddie, S.R. Dundas, D. Kruk, L.M. Broche, Scientific Reports 2020, 10, 14207

"In vivo assessment of tumour associated macrophages in murine melanoma obtained by low-field relaxometry in the presence of iron oxide particles"

S. Baroni, M.R. Ruggiero, V. Bitonto, L.M. Broche, D.J. Lurie, S. Aime, S. Geninatti Crich, Biomaterials 2020, 236, 119805

"Fast-field-cycling NMR at very low magnetic fields: water molecular dynamic biomarkers of glioma cell invasion and migration."

Petit M, Leclercq M, Pierre S, Ruggiero MR, El Atifi M, Boutonnat J, Fries PH, Berger F, Lahrech H. Fast-field-cycling NMR at very low magnetic fields: water molecular dynamic biomarkers of glioma cell invasion and migration. NMR Biomed. 2022 Jun;35(6):e4677. doi: 10.1002/nbm.4677. Epub 2022 Jan 19. PMID: 34961995

"Frequency dependence of water proton longitudinal nuclear magnetic relaxation times in mouse tissues at 20 degrees C."

Escanye JM, Canet D, Robert J. Frequency dependence of water proton longitudinal nuclear magnetic relaxation times in mouse tissues at 20 degrees C. Biochim Biophys Acta. 1982 Nov 17;721(3):305-11. doi: 10.1016/0167-4889(82)90083-0. PMID: 7171630.

"Exploring the tumour extracellular matrix by in vivo Fast Field Cycling relaxometry after the administration of a Gadolinium‐based MRI contrast agent"

S. Baroni, M.R. Ruggiero, S. Aime, S. Geninatti Crich, Magn. Reson. Chem. 2019, 57, 845-851

"Multicomponent analysis of T1 relaxation in bovine articular cartilage at low magnetic fields"

O.V. Petrov, S. Stapf, Magn. Reson. Med. 201981, 2858-2868

"Use of FCC-NMRD relaxometry for early detection and characterization of ex-vivo murine breast cancer"

E. Di Gregorio, G. Ferrauto, S. Lanzardo, E. Gianolio, S. Aime, Sci Rep 20199, 4624

"Evidence for the Role of Intracellular Water Lifetime as a Tumour Biomarker Obtained by In Vivo Field‐Cycling Relaxometry"

M.R. Ruggiero, S. Baroni, S. Pezzana, G. Ferrante, S. Geninatti Crich, S. Aime, Angew. Chem. Int. Ed. 201857, 7468-7472

"Nuclear magnetic relaxation dispersion of murine tissue for development of T1 (R1) dispersion contrast imaging"

Y.T. Araya, F. Martínez‐Santiesteban, W.B. Handler, C.T. Harris, B.A. Chronik, T.J. Scholl, NMR in Biomedicine 201730(12), e3789

"The effect of cholesterol on membrane dynamics on different timescales in lipd bilayers from fast field/cycling NMR relaxometry studies of unilamellar vesicles"

C.C. Fraenza, C.J. Meledandri, E. Anoardo, D.F. Brougham, Chem. Phys. Chem. 2014, 15, 425-435

"Effects of cholesterol on membrane molecular dynamics studied by fast field cycling NMR relaxometry"

C.-J. Hsieh, Y.-W. Chen, D.W. Hwang, Phys. Chem. Chem. Phys. 2013, 15, 16634-16640

"Paramagnetic ions affect relaxation rate dispersion of blood: implications for magnetic resonance relaxation dispersion imaging"

B.R.R. Persson, L. Malmgren, L.G. Salford, J. Bioengineer & Biomedical Sci. 2012, 2, 1000105

Field Cycling MRI

"A fast field-cycling MRI relaxometer for physical contrasts design and pre-clinical studies on small animals"

J.A. Romero, G.G. Rodriguez, E. Anoardo, Journal of Magnetic Resonance 2020311, 106682

"Design of a fast field-cycling magnetic resonance imaging system, characterization and methods for relaxation dispersion measurements around 1.5T"

N. Chanet, G. Guillot, G. Willoquet, L. Jourdain, R-M. Dubuisson, G. Reganha, L. de Rochefort, Rev. Sci. Instrum. 202091, 024102

"Comparison of fast field-cycling magnetic resonance imaging methods and future perspectives"

M. Bodenler, L. de Rochefort, P.J. Ross, N. Chanet, G. Guillot, G.R. Davies, C. Gosweiner, H. Scharfetter, D.J. Lurie, L.M. Broche, Molecular Physics 2019117:7-8, 832-848

"A whole-body Fast Field-Cycling scanner for clinical molecular imaging studies"

L.M. Broche, P.J. Ross, G.R. Davies, M-J. MacLeod, D.J. Lurie, Sci Rep 20199, 10402

"High Field Detection of Biomarkers with Fast Field‐Cycling MRI: The Example of Zinc Sensing"

M. Bödenler, K.P. Malikidogo, J.‐F. Morfin, C.S. Aigner, E. Tóth, C.S. Bonnet, H. Scharfetter, Chemistry 2019, 25, 8236–8239

"Techniques and applications of field-cycling magnetic resonance in medicine"

D.J. Lurie, P.J. Ross and L.M. Broche in Field-cycling NMR Relaxometry: Instrumentation, Model Theories and Applications, Editor: Rainer Kimmich; Vol. 18, 2018, pp358-384; Royal Society of Chemistry; ISBN: 978-1-78801-154-9

"R1 dispersion contrast at high field with fast field-cycling MRI"

M. Bödenler, M. Basini, M.F. Casula, E. Umut, C. Gösweiner, A. Petrovic, D. Kruk, H. Scharfetter, J. Mag. Reson. 2018, 290, 68-75

"Rapid Field-Cycling MRI Using Fast Spin-Echo"

P.J. Ross, L.M. Broche, D.J. Lurie, Magnetic Resonance in Medicine 20157, 31120–1124

Food

"Field-dependent NMR relaxometry for Food Science: Applications and perspectives."

Ateş, Elif & Domenici, Valentina & Florek-Wojciechowska, Małgorzata & Gradišek, Anton & Kruk, Danuta & Maltar-Strmečki, Nadica & Oztop, Mecit & Özvural, Emin & Rollet, Anne-Laure. (2021). Field-dependent NMR relaxometry for Food Science: Applications and perspectives. Trends in Food Science & Technology. 110. 10.1016/j.tifs.2021.02.026

"Fast field cycling NMR relaxometry as a tool to monitor Parmigiano Reggia- no cheese ripening."

Conte, Pellegrino & Cinquanta, Luciano & Lo Meo, Paolo & Mazza, Francesca & Micalizzi, Anna & Corona, Onofrio. (2020). Fast field cycling NMR relaxometry as a tool to monitor Parmigiano Reggia- no cheese ripening. Food Research International. 139. 10.1016/j.foodres.2020.109845

"Comparing different processing methods in apple slice drying. Part 2 solid-state Fast Field Cycling 1H-NMR relaxation properties, shrinkage and changes in volatile compounds"

P. Conte, G. Cuccurullo, A. Metallo, A. Micalizzi, L. Cinquanta, O. Corona, Biosystems Engineering 2019188, 345-354

"Water mobility in cheese by means of Nuclear Magnetic Resonance relaxometry."

Kruk, D., Wojciechowska, M. F. –., Masiewicz, E., Oztop, M., Ploch-Jankowska, A., Duda, P., & Wilczynski, S. (2021). Water mobility in cheese by means of Nuclear Magnetic Resonance relaxometry. Journal of Food Engineering, 298, 110483. https://doi.org/10.1016/j.jfoodeng.2021.110483

"Quantification of manganous ion in wine by NMR relaxometry"

P.R. Bodart, A. Rachocki, J. Tritt-goc, B. Michalke, P. Schmitt-Kopplin, T. Karbowiak, R.D. Gougeon
Talanta 2019209, 120561

"Early stages of fat crystallization evaluated by low-field NMR and small-angle X-ray scattering"

M. Ladd-Parada, M.J. Povey, J. Vieira, M. Rappolt, M.E. Ries, Magn. Reson. Chem. 2019, 1-9

"Fast field cycling NMR relaxometry studies of molten and cooled cocoa butter"

M. Ladd-Parada, M.J. Povey, J. Vieira, M.E. Ries, Molecular Physics 2019117, 1020-1027

"The use of fast field cycling to evaluate the time domain relaxation of starches from tropical fruit seeds"

M.I.B. Tavares, E. Oliveira da Silva, P.S.R.C. Silva, P.J. Sebastiao, Molecular Physics 2019117, 1028-1033

"Use of NMR relaxometry to identify frankfurters of different meat sources"

S.S. Uguz, E.B. Ozvural, M.J. Beira, M.H. Oztop, P.J. Sebastiao, Molecular Physics 2019117, 1015-1019

"A novel method of recognizing liquified honey"

I. Plowas-Korus, L. Masewicz, A. Szwengiel, A. Rachocki, H.M. Baranowska, W. Medycki, Food Chemistry 2018245, 885-889

"Dry-cured ham tissue characterization by fast field cycling NMR relaxometry and quantitative magnetization transfer"

F. Bajd, A. Gradišek, T. Apih and I. Serša, Magn. Reson. Chem. 201654, 827

"Cooking influence on physico-chemical fruit characteristics of eggplant (Solanum melongena L.)"

R. Lo Scalzo, M. Fibiani, G. Francese, A. D’Alessandro, G.L. Rotino, P. Conte, G. Mennella
Food Chemistry 2016194, 835–842

"Conformational Redistribution of Honey Components following Different Storage Conditions"

G. Cimo’ and P. Conte, International Journal of Spectroscopy 2015, Article ID 354327

"Novel application of NMR relaxometry in studies of diffusion in virgin rape oil"

A. Rachocki, J. Tritt-Goc, Food Chemistry 2014, 152, 94–99

"NMR methodologies in the analysis of blueberries"

D. Capitani, A.P. Sobolev, M. Delfini, S. Vista, R. Antiochia, N. Proietti, S. Bubici, G. Ferrante, S. Carradori, F. R. De Salvador, L. Mannina, Electrophoresis 2014, 35, 1615–1626

"Dynamic processes and chemical composition of Lepidium sativum seeds determined by means of field-cycling NMR relaxometry and NMR spectroscopy"

A. Rachocki, L. Latanowicz and J. Tritt-Goc, Anal Bioanal Chem 2012, 404, 3155–3164

"Water molecular dynamics during bread staling by Nuclear Magnetic Resonance"

E. Curti, S. Bubici, E. Carini, S. Baroni and E. Vittadini, Food Science and Technology 2011, 44, 854-859

"Dynamics of pistachio oils by proton nuclear magnetic resonance relaxation dispersion"

P. Conte, V. Mineo, S. Bubici, C. De Pasquale, F. Aboud, A. Maccotta, D. Planeta and G. Alonzo, Anal Bioanal Chem 2011, 400, 1443–1450

"Relaxometric Studies for Food Characterization: The Case of Balsamic and Traditional Balsamic Vinegars"

S. Baroni, R. Consonni, G. Ferrante and S. Aime, J. Agric. Food Chem2009, 57, 3028-3032

"A proton NMR relaxation study of hen egg quality"

L. Laghi, M.A. Cremonini, G. Placucci, S. Sykora, K. Wright and B. Hills, Magnetic Resonance Imaging 2005, 23, 501–510

"Studies of gelation process investigated by fast field cycling relaxometry and dynamical rheology: the case of aqueous low methoxyl pectin solution"

M. Dobies, M. Kozak and S. Jurga, Solid State Nuclear Magnetic Resonance 2004, 25, 188–193

"Probing protein hydration and aging of food materials by the magnetic field dependence of proton spin-lattice relaxation times"

S. Godefroy, J.-P. Korb, L.K. Creamer, P. J. Watkinson and P.T. Callaghan, Journal of Colloid and Interface Science 2003267, 337–342

Liquid crystals

"NMR relaxometry in liquid crystals: molecular organization and molecular dynamics interrelation"

P. Sebastiao in Field-cycling NMR Relaxometry: Instrumentation, Model Theories and Applications, Editor: Rainer Kimmich; Vol. 18, 2018, pp255-302; Royal Society of Chemistry; ISBN: 978-1-78801-154-9

"Slow dynamics in a liquid crystal: 1H and 19F NMR relaxometry"

M. Rajeswari, Trivikram R. Molugu, Surajit Dhara, V. S. S. Sastry, K. Venu and R. Dabrowski
J. Chem. Phys. 2011135, 244507

"Exploring Crystal-Phase Molecular Dynamics of the Low-Viscous Mesogen 6CHBT: A Combined FFC and High-Field NMR Relaxometry Investigation."

Phani Kumar BVN, Lobo NP, Mattea C, Stapf S. Exploring Crystal-Phase Molecular Dynamics of the Low-Viscous Mesogen 6CHBT: A Combined FFC and High-Field NMR Relaxometry Investigation. J Phys Chem B. 2024 Apr 25;128(16):3997-4007. doi: 10.1021/acs.jpcb.3c08259

"Application of field-cycling NMR relaxometry to the study of ultrasound-induced effects in the molecular dynamics and order of mesomorphic materials"

E. Anoardo, C. R. Physique 201011, 160–171

"Spin-lattice dispersion in nematic and smectic-Amesophases in the presence of ultrasonic waves: A theoretical approach"

F. Bonetto and E. Anoardo, Phys. Rev E 200368, 021703

"A Proton Nuclear Magnetic Resonance Relaxation Study of C12E6/D2O"

E.E. Burnell, D. Capitani, C. Casieri and A. L. Segre, J. Phys. Chem2000, B104, 8782

MRI contrast agents / magnetic nanoparticles

"Fast field-cycling magnetic resonance detection of intracellular ultra-small iron oxide particles in vitro: Proof-of-concept"

H. Abbas, L.M. Broche, A. Ezdoglian, D. Li, R. Yuecel, P.J. Ross, L. Cheyne, H.M. Wilson, D.J. Lurie, D.K. Dawson, J. Mag. Reson. 2020, 313, 106722

"A Photocleavable Contrast Agent for Light-Responsive MRI"

F. Reeßing, S.E.M. Huijsse, R.A. J.O. Dierckx, B.L. Feringa, R.J.H. Borra, W. Szymański, Pharmaceuticals 2020, 13(10), 296

"Characterization of the Nuclear Magnetic Resonance Relaxivity of Gadolinium Functionalized Magnetic Nanoparticles"

A. Nan, M. Suciu, I. Ardelean, M. Şenilă, R. Turcu, Analytical Letters 2020

"Characterisation of magnetic resonance imaging (MRI) contrast agents using NMR relaxometry"

S. Aime, M. Botta, D. Esteban-Gomez, C. Platas-Iglesias, Molecular Physics 2019117, 898-909

"Tailoring the magnetic core of organic-coated iron oxides nanoparticles to influence their contrast efficiency for Magnetic Resonance Imaging"

M. Basini, A. Guerrini, M. Cobianchi, F. Orsini, D. Bettega, M. Avolio, C. Innocenti, C. Sangregorio, A. Lascialfari, P. Arosio, Journal of Alloys and Compounds 2019770, 58-66

"Relaxivity of Gd‐Based MRI Contrast Agents in Crosslinked Hyaluronic Acid as a Model for Tissues"

M. Fragai, E. Ravera, F. Tedoldi, C. Luchinat, G. Parigi, Chem. Phys. Chem. 2019, 20, 2204-2209

"Trapping of Gd(III) Ions by Keplerate Polyanionic Nanocapsules in Water: A 1H Fast Field Cycling NMR Relaxometry Study"

S. Pizzanelli, R. Zairov, M. Sokolov, M.C. Mascherpa, B. Akhmadeev, A. Mustafina, L. Calucci, J. Phys. Chem. C 2019, 123, 29, 18095–18102

"A light-responsive liposomal agent for MRI contrast enhancement and monitoring of cargo delivery"

F. Reeßing, M.C.A. Stuart, D.F. Samplonius, R.A.J.O. Dierckx, B.L. Feringa, W. Helfrichc, W. Szymanski, Chem. Commun. 201955, 10784-10787

"Paramagnetic complexes and superparamagnetic systems"

C. Henoumont, L. Vander Elst, S. Laurent in Field-cycling NMR Relaxometry: Instrumentation, Model Theories and Applications, Editor: Rainer Kimmich; Vol. 18, 2018, pp427-447; Royal Society of Chemistry; ISBN: 978-1-78801-154-9

"Macromolecular Crowding May Significantly Affect the Performance of an MRI Contrast Agent: A 1H NMR Spectroscopy, Microimaging, and Fast‐Field‐Cycling NMR Relaxometry Study"

R.‐H. Cheng, J.‐M. Chen, Y.‐W. Chen, H. Cai, X. Cui, D.W. Hwang, Z. Chen, S. Ding, Chemistry Open 2018, 7, 288-296

"Magnetotactic bacteria and biogenic magnetite nanocrystals as potential contrast agents in magnetic resonance imaging"

I. Ardelean, S. Miclaus, C. Moisescu, 2018 EMF-Med 1st World Conference on Biomedical Applications of Electromagnetic Fields (EMF-Med), Split, 2018, pp. 1-2

"Gd-AAZTA-MADEC, an improved blood pool agent for DCE-MRI studies on mice on 1 T scanners"

D.L. Longo, F. Arena, L. Consolino, P. Minazzi, S. Geninatti-Crich, G.B. Giovenzana, S. Aime
Biomaterials 2016, 75, 47-57

"A relaxometric method for the assessment of intestinal permeability based on the oral administration of gadolinium-based MRI contrast agents"

E. Gianolio, C. Boffa, V. Orecchia, P. Bardini, V. Catanzaro, V. Poli, S. Aime
NMR in Biomedicine 2016, 29, 475

"Polycatechol Nanoparticle MRI Contrast Agents"

Y.Li, Y. Huang, Z. Wang, F. Carniato, Y. Xie, J.P. Patterson, M.P. Thompson, C.M. Andolina, T.B. Ditri, J.E. Millstone, J.S. Figueroa, J.D. Rinehart, M. Scadeng, M. Botta, N.C. Gianneschi, Small 2016, 12, 668

"Size selectable nanoparticle assemblies with magnetic anisotropy tunable across the superparamagnetic to ferromagnetic range"

J.K. Stolarczyk, C. J. Meledandri, S.P. Clarke, D.F. Brougham, Chem. Commun. 2016, 52, 13337

"Nanoparticle Clusters: Assembly and Control Over Internal Order, Current Capabilities, and Future Potential"

J.K. Stolarczyk , A. Deak ,D.F. Brougham, Adv. Mater. 2016, 28, 5400

"NMR relaxation induced by iron oxide particles: testing theoretical models"

Y. Gossuin, T. Orlando, M. Basini, D. Henrard, A. Lascialfari, C. Mattea, S. Stapf, Q.L. Vuong, Nanotechnology 2016, 27, 155706

"Glyco-copolypeptide grafted magnetic nanoparticles: the interplay between particle dispersion and RNA loading"

T. Borase, E.K. Fox, F. El Haddassi, S.-A. Cryan, D. F. Brougham, A. Heise, Polymr Chem. 2016, 7, 3221

"USPIO-loaded red blood cells as a biomimetic MR contrast agent: a relaxometric study"

A. Boni, D. Ceratti, A. Antonelli, C. Sfara, M. Magnani, E. Manuali, S. Salamida, A. Gozzi, A. Bifone, Contrast Media Mol. Imaging 2014, 9 229–236

"Gadolinium-loaded polychelating amphiphilic polymer as an enhanced MRI contrast agent for human multiple myeloma and non Hodgkin's lymphoma (human Burkitt's lymphoma)"

D. Kozlowska, S. Biswas, E.K. Fox, B. Wu, F. Bolster, O.P. Edupuganti, V. Torchilin, S. Eustace, M. Botta, R. O'Kennedy, D.F. Brougham, RSC Adv. 2014, 4, 18007-18016

"Relaxometric properties of gadolinium-grafted mesoporous SBA-15 silica materials with varying pore size"

H. Skår, Y. Liang, E. S. Erichsen, R. Anwander, J.G. Seland, Microporous and Mesoporous Materials 2013, 175, 125–133

"Low field magnetic resonance techniques in the development of nanomaterials for biomedical applications"

C. J. Meledandri and D.F. Brougham, Anal. Methods 2012, 4, 331-341

"Gd 3 + -Ion-Doped Upconversion Nanoprobes: Relaxivity Mechanism Probing and Sensitivity Optimization"

F. Chen, W. Bu, S. Zhang, J. Liu, W. Fan, L. Zhou, W. Peng and J. Shi, Adv. Funct. Mater. 2012, 23, 298-307

"Magnetic Iron Oxide Nanoparticles: Synthesis, Stabilization, Vectorization, Physicochemical Characterizations, and Biological Applications"

S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L. Vander Elst and R. N. Muller, Chem. Rev. 2008, 108, 2064–2110

Polymers

"Elucidating the 1H NMR relaxation mechanism in polydisperse polymers and bitumen using measurements, MD simulations, and models"

P.M. Singer, A.V. Parambathu, X. Wang, D. Asthagiri, W.G. Chapman, G. Hirasaki, M. Fleury, J. Phys. Chem. B 2020124, 4222-4233

"Field-cycling NMR relaxometry: the benefit of constructing master curves"

M. Flämig, M. Hofmann, E.A. Rössler, Molecular Physics 2019117, 877-887

"Molecular dynamics in the lyophases of colpolymer P123 investigated with FFC NMR relaxometry"

B.V.N. Phani Kumar, S. Stapf, C. Mattea, Langmuir 201935, 435-445

"Application of field-cycling 1H NMR relaxometry to the study of translational and rotational dynamics in liquids and polymers"

E.A. Rössler, M. Hofmann and N. Fatkullin in Field-cycling NMR Relaxometry:
Instrumentation, Model Theories and Applications, Editor: Rainer Kimmich; Vol.
18, 2018, pp462-489; Royal Society of Chemistry; ISBN: 978-1-78801-154-9

"Field-cycling relaxometry of polymers"

S. Stapf and A. Lozovoi in Field-cycling NMR Relaxometry: Instrumentation, Model Theories and Applications, Editor: Rainer Kimmich; Vol. 18, 2018, pp322-357; Royal Society of Chemistry; ISBN: 978-1-78801-154-9

"Rouse dynamics in PEO-PPO-PEO block-copolymers in aqueous solution as observed through fast field-cycling NMR relaxometry"

C.C. Fraenza, C. Mattea, G.D. Farrher, A. Ordikhani-Seyedlar, S. Stapf, E. Anoardo, Polymer 2018150, 244-253

"Scaling analysis of the viscoelastic response of linear polymers"

F. Mohamed, M. Flämig, M. Hofmann, L. Heymann, L. Willner, N. Fatkullin, N. Aksel, E.A. Rössler, J. Chem. Phys. 2018149, 044902

"Dynamics of a Paradigmatic Linear Polymer: A Proton Field-Cycling NMR Relaxometry Study on Poly(ethylene−propylene)"

M. Hofmann, B. Kresse, L. Heymann, A. F. Privalov, L. Willner, N. Fatkullin, N. Aksel, F. Fujara, E. A. Rössler, Macromolecules 201649, 8622−8632

"Field-Cycling Relaxometry as a Molecular Rheology Technique: Common Analysis of NMR, Shear Modulus and Dielectric Loss Data of Polymers vs Dendrimers"

M. Hofmann, C. Gainaru, B. Cetinkaya, R. Valiullin, N. Fatkullin, and E. A. Rössler, Macromolecules 201548, 7521−7534

"Dynamics of PPI Dendrimers: A Study by Dielectric and 2H NMR Spectroscopy and by Field-Cycling 1H NMR Relaxometry"

F. Mohamed, M. Hofmann, B. Pötzschner, N. Fatkullin and E. A. Rössler, Macromolecules 201548, 3294−3302

"Temperature Dependence of the Segmental Relaxation Time of Polymers Revisited"

B. Schmidtke, M. Hofmann, A. Lichtinger, E. A. Rössler, Macromolecules 201548, 3005−3013

"Recent NMR investigations on molecular dynamics of polymer melts in bulk and in confinement"

E. A. Rössler, S. Stapf, N. Fatkullin, Current Opinion in Colloid & Interface Science 2013, 18, 173–182

"Field-cycling NMR relaxometry of viscous liquids and polymers"

D. Kruk, A. Herrmann, E. A. Rössler, Progress in Nuclear Magnetic Resonance Spectroscopy 201263, 33–64

"Spin–lattice relaxation dispersion in polymers: Dipolar-interaction components and short-and long-time limits"

A. Gubaidullin, T. Shakirov, N. Fatkullin, R. Kimmich, Solid State Nucl. Magn. Reson. 200935, 147-51

"Molecular diffusion on a time scale between nano- and milliseconds probed by field-cycling NMR relaxometry of intermolecular dipolar interactions: Application to polymer melts"

M. Kehr, N. Fatkullin, R. Kimmich, J. Chem. Phys. 2007126, 094903

"Restricted Molecular Dynamics of Polymer Chains by Means of NMR Field Cycling Relaxometry"

S. Kariyo, S. Stapf, Macromol. Chem. Phys. 2005206, 1300–1310

"Polymer Chain Dynamics and NMR"

R. Kimmich, N. Fatkullin, Advances in Polymer Science 2004170, 1 – 113

"Influence of Cross-Link Density and Deformation on the NMR Relaxation Dispersion of Natural Rubber"

S. Kariyo, S. Stapf, Macromolecules 200235, 9253-9255

Porous materials - catalysts & synthetic materials

"Insights into functionality-specific adsorption dynamics and stable reaction intermediates using fast field cycling NMR"

J. Ward-Williams, J.-P. Korb, L.F. Gladden, J. Phys. Chem. 2018122, 20271-20278

"NMR relaxation in porous materials at zero and ultralow magnetic fields"

M.C.D. Tayler, J. Ward-Williams, L.F. Gladden, Journal of Magnetic Resonance 2018297, 1-8

"NMR relaxometry for adsorption studies: Proof of concept with copper adsorption on activated alumina"

Y. Gossuin and Q.L. Vuong, Separation and Purification Technology 2018202, 138-143

"Water behaviour in mesoporous materials as studied by NMR relaxometry"

E. Steiner, S. Bouguet-Bonnet, J.-L. Blin, D. Canet, J. Phys. Chem. A 2011115, 9941-9946

Porous materials - cements, ceramics

"Applications of Field-cycling NMR relaxometry to cement materials"

I. Ardelean in Field-cycling NMR Relaxometry: Instrumentation, Model Theories and Applications, Editor: Rainer Kimmich; Vol. 18, 2018, pp462-489; Royal Society of Chemistry; ISBN: 978-1-78801-154-9

"The effect of curing temperature on early hydration of gray cement via fast field cycling-NMR relaxometry"

C. Badea, A. Pop, C. Mattea, S. Stapf, I. Ardelean, Appl. Magn. Reson. 201445, 1299-1309

"Frequency-dependent NMR relaxation of liquids confined inside porous media containing an increased amount of magnetic impurities"

S. Muncaci, C. Mattea, S. Stapf, I. Ardelean, Magn. Reson. Chem. 201351, 123-128

"NMR and nuclear spin relaxation of cement and concrete materials"

J.-P. Korb, Current Opinion in Colloid & Interface Science 200914, 192–202.

"Microstructure and texture of hydrated cement-based materials: A proton field cycling relaxometry approach"

J.-P. Korb, L. Monteilhet, P.J. McDonald, J. Mitchell, Cement and Concrete Research 200737, 295–302

"Surface relaxation and chemical exchange in hydrating cement pastes: A two-dimensional NMR relaxation study"

P. J. McDonald, J.-P. Korb, J. Mitchell and L. Monteilhet, Phys. Rev. E 200572, 011409.

"Probing directly the surface area of a cement-based material by nuclear magnetic relaxation dispersion"

F. Barberon, J.-P. Korb, D. Petit, V. Morin, E. Bermejo, Phys. Rev. Lett. 200390, 116103

"Structure-texture correlation in ultra high performance concrete: a nuclear magnetic resonance"

C. Porteneuve, J.-P. Korb, D. Petit, H. Zanni, Cement and Concrete Research 200232, 97-101

Rock cores and oil

"NMR relaxometry analysis of lubricant oils degradation."

De Los Milagros Ballari, M., Bonetto, F. J., & Anoardo, E. (2005). NMR relaxometry analysis of lubricant oils degradation. Journal of Physics D Applied Physics, 38(19), 3746–3750. https://doi.org/10.1088/0022-3727/38/19/025

"Elucidating the 1H NMR relaxation mechanism in polydisperse polymers and bitumen using measurements, MD simulations, and models"

P.M. Singer, A.V. Parambathu, X. Wang, D. Asthagiri, W.G. Chapman, G. Hirasaki, M. Fleury, J. Phys. Chem. B 2020124, 4222-4233

"Applying Fast-Field Cycling Nuclear Magnetic Relaxation to Petroleum Tight Sandstone Rocks"

B. Zhou, P. Yang, G. Ferrante, M. Pasin, R. Steele, V. Bortolotti, J.-P. Korb, Energy Fuels 201933, 1016-1022

"Multiscale nuclear magnetic relaxation dispersion of complex liquids in bulk and confinement"

J.-P. Korb, Progress in Nuclear Magnetic Resonance Spectroscopy 2018104, 12-55

"Probing the dynamics of petroleum fluids in bulk and confinement by fast field-cycling relaxometry"

J.-P. Korb in Field-cycling NMR Relaxometry: Instrumentation, Model Theories and Applications, Editor: Rainer Kimmich; Vol. 18, 2018, pp448-461; Royal Society of Chemistry; ISBN: 978-1-78801-154-9

"Estimating Saturations in Organic Shales Using 2D NMR"

B. Nicot, N. Vorapalawut, B. Rousseau, L. F. Madariaga, G. Hamon and J.-P. Korb
Petrophysics 201657, 19–29

"Dynamics and Wettability of Oil and Water in Oil Shales"

J.P. Korb, B. Nicot, A. Louis-Joseph, S. Bubici and G. Ferrante, J. Phys.Chem. C 2014118, 23212–23218

"Probing Maltene−Asphaltene Interaction in Crude Oil by Means of NMR Relaxation"

S. Stapf, A. Ordikhani-Seyedlar, N. Ryan, C. Mattea, R. Kausik, D.E. Freed, Y.-Q. Song and M.D. Hürlimann, Energy Fuels 201428, 2395−2401

"Probing Structure and Dynamics of Bulk and Confined Crude Oils by Multiscale NMR Spectroscopy, Diffusometry, and Relaxometry"

J.-P. Korb, A. Louis-Joseph, L. Benamsili, J. Phys. Chem. B 2013117, 7002−7014

"Frequency-dependent NMR relaxation of liquids confined inside porous media containing an increased amount of magnetic impurities"

S. Muncaci, C. Mattea, S. Stapf and I. Ardelean, Magn. Reson. Chem. 201351, 123–128

"Nuclear Magnetic Resonance Dispersion of Distributions as a Probe of Aggregation in Crude Oils"

L. Zielinski and M.D. Hurlimann, Energy Fuels 201125, 5090–5099

"Microscopic Wettability of Carbonate Rocks: a Proton Field Cycling NMR Approach"

G. Freiman, J.-P. Korb, B. Nicot, P. Ligneul, Diffusion Fundamentals 200910, 25.1 - 25.3

"NMR relaxometry analysis of lubricant oils degradation"

M. Ballari, F. Bonetto and E. Anoardo, J. Phys. D: Appl. Phys. 200538, 3746–3750

"Surface nuclear magnetic relaxation and dynamics of water and oil in macroporous media"

S. Godefroy, J.-P. Korb, M. Fleury and R. G. Bryant, Phys. Rev. E 200164, 021605-021613

Porous materials - Soils & environment

"Environmental NMR: Fast-field-cycling Relaxometry."

Environmental NMR: Fast-field-cycling Relaxometry, Pellegrino Conte & Giuseppe Alonzo eMagRes, 2013, Vol 2: 389–398. DOI 10.1002/9780470034590.emrstm1330

"Nuclear magnetic resonance with fast field-cycling setup: a valid tool for soil quality investigation"

P. Conte and P. Lo Meo, Agronomy 202010, 1040

"Water dynamics at the solid-liquid interface to unveil the textural features of synthetic nanosponges"

P. Lo Meo, F. Mundo, S. Terranove, P. Conte, D. Chillura Martino, J. Phys. Chem. B 2020124, 1847-1857

"Standardizing the use of fast-field cycling NMR relaxometry for measuring hydrological connectivity inside the soil"

P. Conte and V. Ferro, Magn. Reson. Chem. 201958, 41-50

"Environmental Applications of Fast Field-Cycling NMR Relaxometry"

P. Conte in Field-cycling NMR Relaxometry: Instrumentation, Model Theories and Applications, Editor: Rainer Kimmich; Vol. 18, 2018, pp229-254; Royal Society of Chemistry; ISBN: 978-1-78801-154-9

"Structural and mechanical modification induced by water content in giant wild reed (A. donax L.)"

P. Conte, V. Fiore, A. Valenza, ACS Omega 20183, 18510-18517

"Application of fast field-cycling NMR relaxometry to soil material"

S. Haber-Pohlmeier in Field-cycling NMR Relaxometry: Instrumentation, Model Theories and Applications, Editor: Rainer Kimmich; Vol. 18, 2018, pp490-511; Royal Society of Chemistry; ISBN: 978-1-78801-154-9

"Measuring hydrological connectivity inside a soil by low field nuclear magnetic resonance relaxometry"

P. Conte and V. Ferro, Hydrological Processes 201832, 93-101

"Organic coating on biochar explains its nutrient retention and stimulation of soil fertility"

N. Hagemann, S. Joseph, H.-P. Schmidt, C.I. Kammann, J. Harter, T. Borch,
R.B. Young, K. Varga, S. Taherymoosavi, K. Wade Elliott, A. McKenna, M. Albu, C.
Mayrhofer, M. Obst, P. Conte, A. Dieguez-Alonso, S. Orsetti, E. Subdiaga, S.
Behrens, A. Kappler, Nature Communications 20178, 1089

"Assessing hydrological connectivity inside a soil by fast-field-cycling nuclear magnetic resonance relaxometry and its link to sediment delivery processes"

P. Conte, C. Di Stefano, V. Ferro, V. A. Laudicina, E. Palazzolo, Environ. Earth Sci. 201776, 526

"Soil-water interactions unveiled by fast field cycling NMR relaxometry"

P. Conte and H.-P. Schmidt, eMagRes 20176, 453-464

"Evaluation of the surface affinity of water in three biochars using fast field cycling NMR relaxometry"

S. Bubici, J.-P. Korb, J. Kučerik and P. Conte, Magn. Reson. Chem. 201654, 365-370

"Molecular Dynamics of Water in Wood Studied by Fast Field Cycling Nuclear Magnetic Resonance Relaxometry"

X. Li, X. Wang, M. Zhang, BioResources 201611, 1882-1891

"Structure alteration of a sandy-clay soil by biochar amendments"

G. Baiamonte, C. De Pasquale, V. Marsala, G. Cimò, G. Alonzo, G. Crescimanno, P. Conte, J. Soil Sediments 201515, 816-824

"Mechanisms of Water Interaction with Pore Systems of Hydrochar and Pyrochar from Poplar Forestry Waste"

P. Conte, U.M. Hanke, V. Marsala, G. Cimò, G. Alonzo and B. Glaser, J. Agric. Food Chem. 201462, 4917−4923

"Hydration and water holding properties of cross-linked lignite humic acids"

Z. Cihlář , L. Vojtová, P. Conte, S. Nasir, J. Kučerík, Geoderma 2014230-231,151–160

"Environmental NMR: Fast-field-cycling Relaxometry"

P. Conte and G. Alonzo, eMagRes 20132, 389–398

"Nature of water-biochar interface interactions"

P. Conte, V. Marsala, C. De Pasquale, S. Bubici, M. Valagussa, A. Pozzi and G. Alonzo, GCB Bioenergy 2013,5, 116–121

"Reconstruction of the environmental evolution of a Sicilian saltmarsh (Italy)"

A. Maccotta, C. De Pasquale, A. Caruso, C. Cosentino, G. Alonzo, P. Conte, Environ. Sci. Pollut. Res. 201320, 4847–4858

"Applicability of solid state fast field cycling NMR relaxometry in understanding relaxation properties of leaves and leaf-litters"

A.E. Berns, S. Bubici, C. De Pasquale, G. Alonzo and P. Conte, Organic Geochemistry 201142, 978–984

Proteins

"Water dynamics in whey-protein-based composite hydrogels by means of nmr relaxometry."

Ozel, B., Kruk, D., Wojciechowski, M., Osuch, M., & Oztop, M. H. (2021). Water dynamics in Whey-Protein-Based composite hydrogels by means of NMR relaxometry. International Journal of Molecular Sciences, 22(18), 9672. https://doi.org/10.3390/ijms22189672

"Nuclear magnetic relaxation dispersion of water-protein systems"

R.G. Bryant in Field-cycling NMR Relaxometry: Instrumentation, Model Theories and Applications, Editor: Rainer Kimmich; Vol. 18, 2018, pp207-228; Royal Society of Chemistry; ISBN: 978-1-78801-154-9

"The ‘‘long tail’’ of the protein tumbling correlation function: observation by 1H NMR relaxometry in a wide frequency and concentration range"

M. Roos, M. Hofmann, S. Link, M. Ott, J. Balbach, E. Rossler, K. Saalwachter, A. Krushelnitsky, J. Biomol. NMR 201563, 403–415

"Experimental Determination of Microsecond Reorientation Correlation Times in Protein Solutions"

E. Ravera, G. Parigi, A. Mainz, T. L. Religa, B. Reif, and C. Luchinat, J. Phys. Chem. B 2013, 117, 3548−3553

"Water and Protein Dynamics in Sedimented Systems: A Relaxometric Investigation"

C. Luchinat, G. Parigi, and E. Ravera, ChemPhysChem 201314, 1–7

"Measurement of Fibrin Concentration by Fast Field-Cycling NMR"

L.M. Broche, S.R. Ismail, N. A. Booth and D.J. Lurie, Magnetic Resonance in Medicine 201267,1453–1457

"Water-Proton-Spin-Lattice-Relaxation Dispersion of Paramagnetic Protein Solutions"

G. Diakova, Y. Goddard, J.-P. Korb and R.G. Bryant, J. Magn. Reson. 2011208, 195–203

"Water and Backbone Dynamics in a Hydrated Protein"

G. Diakova, Y.A. Goddard, J.-P. Korb and R. G. Bryant, Biophysical J. 201098, 138–146

"Dimensionality of diffusive exploration at the protein interface in solution"

D.S. Grebenkov , Y.A. Goddard, G. Diakova, J.P. Korb and R. G. Bryant, J. Phys. Chem. B 2009,113 ,13347-56

"Thermodynamic analysis of hydration in human serum heme–albumin"

S. Baroni, G. Pariani, G. Fanali, D. Longo, P. Ascenzi, S. Aime, M. Fasano, Biochemical and Biophysical Research Communications 2009385, 385–389

"Nuclear Spin-Lattice Relaxation Studies of Biomolecular Dynamics."

Pajski, J. J. (2011). (Doctoral dissertation, University of Virginia).

"Water accessibility, aggregation, and motional features of polysaccharide-protein conjugate vaccines"

F. Berti, P. Costantino, M. Fragai, C. Luchinat, Biophys. J. 2004, 86, 3-9

"Model-Free Analysis of Stretched Relaxation Dispersions"

B. Halle, H. Johannesson and K. Venu, J. Magn. Res. 1998135, 1–13

Relaxometry Theory

"Understanding the nature of nuclear magnetic resonance relaxation by means of fast-field-cycling relaxometry and molecular dynamics simulations – the validity of relaxation models"

P. Honegger, V. Overbeck, A. Strate, A. Appelhagen, M. Sappl, E. Heid, C. Schroder, R. Ludwig, O. Steinhauser, J. Phys. Chem. Lett. 2020, 11, 2165-2170

"Essentials of the theory of spin relaxation as needed for field-cycling NMR"

D. Kruk in Field-cycling NMR Relaxometry: Instrumentation, Model Theories and Applications, Editor: Rainer Kimmich; Vol. 18, 2018, pp42-66; Royal Society of Chemistry; ISBN: 978-1-78801-154-9

Soft matter - liquids and gels

"A proton T1-nuclear magnetic resonance dispersion study of water motion in snowflakes and hexagonal ice"

P.-O. Westlund, Molecular Physics 2019, 177, 960-967

"Mechanism of water dynamics in hyaluronic dermal fillers revealed by nuclear magnetic resonance relaxometry"

D. Kruk, P. Rochowski, E. Masiewicz, S. Wilcynski, M. Wojciechowski, L.M. Broche, D.J. Lurie, Chem. Phys. Chem. 2019, 20, 1-8

"Molecular order and dynamics of water in hybrid cellulose acetate-silica asymmetric membranes"

M. Jardim Beira, M.P. Silva, M. Condesso, P. Cosme, P.L. Almeida, M.C. Corvo, P.J.
Sebastiao, J.L. Figueirinhas, M.N. de Pinho, Molecular Physics 2018

"Dynamics of dimethylbutanols in plastic crystalline phases by field cycling 1H NMR relaxometry"

E. Carignani, C. Forte, E. Juszynska-Galqzka, M. Galqzka, M. Massalska-Arodz, A. Mandoli, M. Geppi, L. Calucci, J. Phys. Chem. 2018, 122, 9792-9802

"Study of structural and dynamic characteristics of copper(II) amino acid complexes in solutions by combined EPR and NMR relaxation methods"

M.S. Bukharov, V.G. Shtyrlin, A.Sh. Mukhtarov, G.V. Mamin, S. Stapf, C. Mattea, A.A. Krutikov, A.N. Il’in, N.Yu. Serov, Phys. Chem. Chem. Phys. 2014, 16, 9411

"The solvent dynamics at pore surfaces in molecular gels studied by field/cycling magnetic resonance relaxometry"

J. Tritt-Goc, A. Rachocki, M. Bielejewski, Soft Matter 2014, 10, 7810

"Translational dynamics of water at the phospholipid interface"

K.G. Victor, J.-P. Korb, R.G. Bryant, J. Phys. Chem. B 2013, 117, 12475-12478

"Inter- and Intramolecular Relaxation in Molecular Liquids by Field Cycling 1H NMR Relaxometry"

R. Meier, D. Kruk, A. Bourdick, E. Schneider, E. A. Rössler, Appl. Magn. Reson. 2013, 44, 153–168

"Water behavior in hybrid silica gels as studied by 1H nuclear magnetic resonance relaxometry. Evidence of two hydration layers"

D. Oulkadi, M. Yemloul, S. Desobry-Banon, D. Canet, Microporous and Mesoporous Materials 2013, 172, 213–216

"Intermolecular relaxation in glycerol as revealed by field cycling 1H NMR relaxometry dilution experiments"

R. Meier, D. Kruk, J. Gmeiner, E. A. Rössler, J. Chem. Phys. 2012, 136, 034508

"Nuclear magnetic resonance relaxometry as a method of measuring translational diffusion coefficients in liquids"

D. Kruk, R. Meier, E. A. Rössler, Phys. Rev. E 2012, 85, 020201(R)

"“Relaxometry” experiments and analysis of dispersion curves: an illustrative example of toluene in liquid and in organogel phases"

E. Steiner, S. Bouguet-Bonnet, A. Robert, D. Canet, Concepts in Magnetic Resonance Part A 2012, 40A, 80-89

"Temperature and size-dependence of membrane molecular dynamics in unilamellar vesicles by fast field-cycling NMR relaxometry"

J. Perlo, C.J. Meledandri, E. Anoardo, D.F. Brougham, J. Phys. Chem. B 2011, 115, 3444-3451

"Solvent dynamical behaviour in an organogel phase as studied by NMR relaxation and diffusion experiments"

M. Yemloul, E. Steiner, A. Robert, S. Bouguet-Bonnet, F. Allix, B. Jamart-Grégoire, D. Canet, J. Phys. Chem. B 2011, 115, 2511-2517

"Interaction of chlorobenzene with gelator in methyl-4,6-O-(p-nitrobenzylidene)-a-D-glucopyranoside gel probed by proton fastfield cycling NMR relaxometry"

J. Tritt-Goc, M. Bielejewski, R. Luboradzki, Tetrahedron 2011, 67, 8170-8176

"Evidence of Solvent-Gelator Interaction in Sugar-Based Organogel Studied by Field-Cycling NMR Relaxometry"

M. Bielejewski, J. Tritt-Goc, Langmuir 2010, 26,17459–17464

"Comparative Studies of the Dynamics in Viscous Liquids by Means of Dielectric Spectroscopy and Field Cycling NMR"

R. Meier, R. Kahlau, D. Kruk, E. A. Rössler, J. Phys. Chem. A 2010, 114,7847–7855

"Dissolution Mechanism of Crystalline Cellulose in H3PO4 As Assessed by High-Field NMR Spectroscopy and Fast Field Cycling NMR Relaxometry"

P. Conte, A. Maccotta, C. De Pasquale, S. Bubici and G. Alonzo, J. Agric. Food Chem. 2009, 57, 8748–8752

Technical aspects of Fast Field Cycling

"New trends in field-cycling NMR technology"

E. Anoardo, S. Kruber, G.O. Forte, G.A. Dominguez in Field-cycling NMR Relaxometry: Instrumentation, Model Theories and Applications, Editor: Rainer Kimmich; Vol. 18, 2018, pp67-87; Royal Society of Chemistry; ISBN: 978-1-78801-154-9

"Broadband fast field-cycling relaxometer: requirements, instrumentation and verification"

B. Kresse and A.F. Privalov in Field-cycling NMR Relaxometry: Instrumentation, Model Theories and Applications, Editor: Rainer Kimmich; Vol. 18, 2018, pp88-117; Royal Society of Chemistry; ISBN: 978-1-78801-154-9

"Specific aspects of the design of field-cycling devices"

D.M. Sousa in Field-cycling NMR Relaxometry: Instrumentation, Model Theories and Applications, Editor: Rainer Kimmich; Vol. 18, 2018, pp118-137; Royal Society of Chemistry; ISBN: 978-1-78801-154-9

"Fast field-cycling NMR experiments with hyperpolarized spins"

A.S. Kiryutin, K.L. Ivanov, A.V. Yurkovskaya and H.-M. Vieth in Field-cycling NMR Relaxometry: Instrumentation, Model Theories and Applications, Editor: Rainer Kimmich; Vol. 18, 2018, pp512-562; Royal Society of Chemistry; ISBN: 978-1-78801-154-9

"Application of CPMG acquisition in Fast-Field-Cycling relaxometry"

O. Neudert, C. Mattea, S. Stapf, Microporous and Mesoporous Materials 2018269, 103-108

"1H NMR at Larmor frequencies down to 3 Hz by means of Field-Cycling techniques"

B. Kresse, M. Becher, A.F. Privalov, M. Hofmann, E.A. Rössler, M. Vogel, F. Fujara, Journal of Magnetic Resonance 2017277, 79–85

"A compact X-Band resonator for DNP-enhanced Fast-Field-Cycling NMR"

O. Neudert, C. Mattea, S. Stapf, Journal of Magnetic Resonance 2016271, 7–14.

"Technical aspects of fast Field Cycling"

G.Ferrante and S.Sykora, Advanced Inorganic Chemistry 2005, vol.57, 405-470

Models to Interpret NMRD Curve

"Relaxation Effects in Nuclear Magnetic Resonance Absorption."

Bloembergen, N., Purcell, E. M., & Pound, R. V. (1948). Relaxation effects in nuclear magnetic resonance absorption. Physical Review, 73(7), 679–712. https://doi.org/10.1103/physrev.73.679

"1H NMRD profiles of diamagnetic proteins: a model-free analysis."

Bertini, I., Fragai, M., Luchinat, C. and Parigi, G. (2000), 1H NMRD profiles of diamagnetic proteins: a model-free analysis. Magn. Reson. Chem., 38: 543-550. https://doi.org/10.1002/1097-458X(200007)38:7<543::AID-MRC722>3.0.CO;2-#

"Robust Algorithms for the Analysis of Fast-Field-Cycling Nuclear Magnetic Resonance Dispersion Curves."

Bortolotti V., Conte P., Landi G., Lo Meo P., Nagmutdinova A., Spinelli G.V., et al. (2024). Robust Algorithms for the Analysis of Fast-Field-Cycling Nuclear Magnetic Resonance Dispersion Curves. COMPUTERS, 13(6), 1-14 [10.3390/computers13060129].

"Heuristic Algorithm for the Analysis of Fast Field Cycling (FFC) NMR Dispersion Curves."

Lo Meo, P., Terranova, S., Di Vincenzo, A., Martino, D. C., & Conte, P. (2021). Heuristic Algorithm for the analysis of Fast Field cycling (FFC) NMR dispersion curves. Analytical Chemistry, 93(24), 8553–8558. https://doi.org/10.1021/acs.analchem.1c01264

"Advances in the Interpretation of Frequency-Dependent Nuclear Magnetic Resonance Measurements from Porous Material."

Faux D, Kogon R, Bortolotti V, McDonald P. Advances in the Interpretation of Frequency-Dependent Nuclear Magnetic Resonance Measurements from Porous Material. Molecules. 2019 Oct 14;24(20):3688. doi: 10.3390/molecules24203688. PMID: 31614973; PMCID: PMC6832834.

"Appendix B: Introduction to FFC NMR Theory and Models for Complex and Confined Fluids."

Bortolotti, V., Brizi, L., Landi, G., Testa, C., & Zama, F. (2024). Introduction to FFC NMR theory and models for complex and confined fluids. In Royal Society of Chemistry eBooks (pp. 460–506). https://doi.org/10.1039/bk9781837671250-00460

"Dynamical surface affinity of diphasic liquids as a probe of wettability of multimodal porous media."

Korb, J., Freiman, G., Nicot, B., & Ligneul, P. (2009). Dynamical surface affinity of diphasic liquids as a probe of wettability of multimodal porous media. Physical Review E, 80(6). https://doi.org/10.1103/physreve.80.061601

"Intermittent Brownian dynamics over a rigid strand: Heavily tailed relocation statistics in a simple geometry."

Levitz, P., Zinsmeister, M., Davidson, P., Constantin, D., & Poncelet, O. (2008). Intermittent Brownian dynamics over a rigid strand: Heavily tailed relocation statistics in a simple geometry. Physical Review E, 78(3). https://doi.org/10.1103/physreve.78.030102

"Proton and Deuteron Field-Cycling NMR Relaxometry of Liquids in Porous Glasses: Evidence for Lévy-Walk Statistics."

Stapf, S., Kimmich, R., & Seitter, R. (1995). Proton and Deuteron Field-Cycling NMR Relaxometry of liquids in porous glasses: Evidence for Lévy-Walk statistics. Physical Review Letters, 75(15), 2855–2858. https://doi.org/10.1103/physrevlett.75.2855